2,233 research outputs found

    Heinrich Rohrer (1933–2013): Co-inventor of the scanning tunnelling microscope.

    Get PDF

    Minimum Participation Rules for the Provision of Public Goods

    Get PDF
    This paper considers the endogenous formation of an institution to provide a public good. If the institution governs only its members, players have an incentive to free ride on the institution formation of others and the social dilemma is simply shifted to a higher level. Addressing this second-order social dilemma, we study the effectiveness of three different minimum participation requirements: 1. full participation / unanimity rule; 2. partial participation; 3. unanimity first and in case of failure partial participation. While unanimity is most effective once established, one might suspect that a weaker minimum participation rule is preferable in practice as it might facilitate the formation of the institution. The data of our laboratory experiment do not support this latter view, though. In fact, weakening the participation requirement does not increase the number of implemented institutions. Thus, we conclude that the most effective participation requirement is the unanimity rule which leaves no room for free riding on either level of the social dilemma.public goods, coalition formation, endogenous institutions

    The Design and Application of an Acoustic Front-End for Use in Speech Interfaces

    Get PDF
    This thesis describes the design, implementation, and application of an acoustic front-end. Such front-ends constitute the core of automatic speech recognition systems. The front-end whose development is reported here has been designed for speaker-independent large vocabulary recognition. The emphasis of this thesis is more one of design than of application. This work exploits the current state-of-the-art in speech recognition research, for example, the use of Hidden Markov Models. It describes the steps taken to build a speaker-independent large vocabulary system from signal processing, through pattern matching, to language modelling. An acoustic front-end can be considered as a multi-stage process, each of which requires the specification of many parameters. Some parameters have fundamental consequences for the ultimate application of the front-end. Therefore, a major part of this thesis is concerned with their analysis and specification. Experiments were carried out to determine the characteristics of individual parameters, the results of which were then used to motivate particular parameter settings. The thesis concludes with some applications that point out, not only the power of the resulting acoustic front-end, but also its limitations

    The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion

    Get PDF
    Background: Cell adhesion molecules are plasma membrane proteins specialized in cell-cell recognition and adhesion. Two related adhesion molecules, Necl-1 and Necl-2/SynCAM, were recently described and shown to fulfill important functions in the central nervous system. The purpose of the work was to investigate the distribution, and the properties of Necl-3/SynCAM-2, a previously uncharacterized member of the Necl family with which it shares a conserved modular organization and extensive sequence homology. Results: We show that Necl-3/SynCAM-2 is a plasma membrane protein that accumulates in several tissues, including those of the central and peripheral nervous system. There, Necl-3/SynCAM-2 is expressed in ependymal cells and in myelinated axons, and sits at the interface between the axon shaft and the myelin sheath. Several independent assays demonstrate that Necl-3/SynCAM-2 functionally and selectively interacts with oligodendrocytes. We finally prove that Necl-3/SynCAM-2 is a bona fide adhesion molecule that engages in homo- and heterophilic interactions with the other Necl family members, leading to cell aggregation. Conclusion: Collectively, our manuscripts and the works onNecl-1 and SynCAM/Necl-2 reveal a complex set of interactions engaged in by the Necl proteins in the nervous system. Our work also support the notion that the family of Necl proteins fulfils key adhesion and recognition functions in the nervous system, in particular between different cell types

    The rotator spectrum in the delta-regime of the O(n) effective field theory in 3 and 4 dimensions

    Get PDF
    The low lying spectrum of the O(n) effective field theory is calculated in the delta-regime in 3 and 4 space-time dimensions using lattice regularization to NNL order. It allows, in particular, to determine, using numerical simulations in different spatial volumes, the pion decay constant F in QCD with 2 flavours or the spin stiffness rho for an antiferromagnet in d=2+1 dimensions.Comment: 20 pages, no figure

    Computer-assisted analysis of functional internal rotation after reverse total shoulder arthroplasty: implications for component choice and orientation

    Full text link
    PURPOSE Functional internal rotation (IR) is a combination of extension and IR. It is clinically often limited after reverse total shoulder arthroplasty (RTSA) either due to loss of extension or IR in extension. It was the purpose of this study to determine the ideal in-vitro combination of glenoid and humeral components to achieve impingement-free functional IR. METHODS RTSA components were virtually implanted into a normal scapula (previously established with a statistical shape model) and into a corresponding humerus using a computer planning program (CASPA). Baseline glenoid configuration consisted of a 28 mm baseplate placed flush with the posteroinferior glenoid rim, a baseplate inclination angle of 96° (relative to the supraspinatus fossa) and a 36 mm standard glenosphere. Baseline humeral configuration consisted of a 12 mm humeral stem, a metaphysis with a neck shaft angle (NSA) of 155° (+ 6 mm medial offset), anatomic torsion of -20° and a symmetric PE inlay (36mmx0mm). Additional configurations with different humeral torsion (-20°, + 10°), NSA (135°, 145°, 155°), baseplate position, diameter, lateralization and inclination were tested. Glenohumeral extension of 5, 10, 20, and 40° was performed first, followed by IR of 20, 40, and 60° with the arm in extension of 40°-the value previously identified as necessary for satisfactory clinical functional IR. The different component combinations were taken through simulated ROM and the impingement volume (mm3^{3}) was recorded. Furthermore, the occurrence of impingement was read out in 5° motion increments. RESULTS In all cases where impingement occurred, it occurred between the PE inlay and the posterior glenoid rim. Only in 11 of 36 combinations full functional IR was possible without impingement. Anterosuperior baseplate positioning showed the highest impingement volume with every combination of NSA and torsion. A posteroinferiorly positioned 26 mm baseplate resulting in an additional 2 mm of inferior overhang as well as 6 mm baseplate lateralization offered the best impingement-free functional IR (5/6 combinations without impingement). Low impingement potential resulted from a combination of NSA 135° and + 10° torsion (4/6 combinations without impingement), followed by NSA 135° and -20° torsion (3/6 combinations without impingement) regardless of glenoid setup. CONCLUSION The largest impingement-free functional IRs resulted from combining a posteroinferior baseplate position, a greater inferior glenosphere overhang, 90° of baseplate inclination angle, 6 mm glenosphere lateralization with respect to baseline setup, a lower NSA and antetorsion of the humeral component. Surgeons can employ and combine these implant configurations to achieve and improve functional IR when planning and performing RTSA. LEVEL OF EVIDENCE Basic Science Study, Biomechanics

    Computerassistierte Präzisionschirurgie am Ohr

    Get PDF
    Chirurgische Eingriffe am Ohr stellen aufgrund der komplexen Anatomie und der Grössenverhältnisse der beteiligten anatomischen Strukturen eine Herausforderung für den HNO-Chirurgen dar. In diesem Beitrag wird ein Ansatz für die roboterbasierte Navigation zur Hörgeräteimplantation vorgestellt. Insbesondere wird auf die Möglichkeit des Fräsens von Implantatlagern im Felsenbein eingegangen. Je präziser ein Implantat im Schädel verankert werden kann, desto einfacher ist der chirurgischen Ablauf. Weiterhin, profitieren Patienten von verkürzten Operationszeiten und weniger schmerzhaften Eingriffe

    CRISPR/Cas9-Mediated Targeting of BPV-1-Transformed Primary Equine Sarcoid Fibroblasts

    Get PDF
    Equine sarcoids (EqS) are fibroblast-derived skin tumors associated with bovine papillomavirus 1 and 2 (BPV-1 and -2). Based on Southern blotting, the BPV-1 genome was not found to be integrated in the host cell genome, suggesting that EqS pathogenesis does not result from insertional mutagenesis. Hence, CRISPR/Cas9 implies an interesting tool for selectively targeting BPV-1 episomes or genetically anchored suspected host factors. To address this in a proof-of-concept study, we confirmed the exclusive episomal persistence of BPV-1 in EqS using targeted locus amplification (TLA). To investigate the CRISPR/Cas9-mediated editing of BPV-1 episomes, primary equine fibroblast cultures were established and characterized. In the EqS fibroblast cultures, CRISPR-mediated targeting of the episomal E5 and E6 oncogenes as well as the BPV-1 long control region was successful and resulted in a pronounced reduction of the BPV-1 load. Moreover, the deletion of the equine Vimentin (VIM), which is highly expressed in EqS, considerably decreased the number of BPV-1 episomes. Our results suggest CRISPR/Cas9-based gene targeting may serve as a tool to help further unravel the biology of EqS pathogenesis
    • …
    corecore